Question: -
Let
$$f(x) = \frac{1 - x(1 + |1 - x|)}{|1 - x|} \cos\left(\frac{1}{1 - x}\right)$$

for $x \neq 1$ Then
(a) $\lim_{x \to 1^+} f(x) = 0$
(b) $\lim_{x \to 1^-} f(x)$ does not exist
(c) $\lim_{x \to 1^-} f(x) = 0$
(d) $\lim_{x \to 1^+} f(x)$ does not exist

Solution: -

$$f(x) = \frac{1 - x(1 + |1 - x|)}{|1 - x|} \cos\left(\frac{1}{1 - x}\right)$$

Now, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{1 - x(1 + 1 - x)}{1 - x} \cos\left(\frac{1}{1 - x}\right)$
$$= \lim_{x \to 1^{-}} (1 - x) \cos\left(\frac{1}{1 - x}\right) = 0$$
and $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{1 - x(1 - 1 + x)}{x - 1} \cos\left(\frac{1}{1 - x}\right)$
$$= \lim_{x \to 1^{+}} - (x + 1) \cdot \cos\left(\frac{1}{x + 1}\right), \text{ which does not exist.}$$